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Abstract
We present an exact solution for a catalytically activated annihilation A + A →
0 reaction taking place on a one-dimensional chain in which some segments
(placed at random, with mean concentration p) possess special, catalytic
properties. An annihilation reaction takes place as soon as any two A

particles land from the reservoir onto two vacant sites at the extremities of
the catalytic segment, or when any A particle lands onto a vacant site on
a catalytic segment while the site at the other extremity of this segment is
already occupied by another A particle. We find that the disorder-average
pressure P (quen) per site of such a chain is given by P (quen) = P (Lan) + β−1F ,
where P (Lan) = β−1 ln(1 + z) is the Langmuir adsorption pressure, (z being
the activity and β−1 the temperature), while β−1F is the reaction-induced
contribution, which can be expressed, under appropriate change of notation,
as the Lyapunov exponent for the product of 2 × 2 random matrices, obtained
exactly by Derrida and Hilhorst (1983 J. Phys. A: Math. Gen. 16 2641). Explicit
asymptotic formulae for the particle mean density and the compressibility are
also presented.

PACS numbers: 82.65.+r, 64.60.Cn, 68.43.De

1. Introduction

Catalytically activated reactions (CARs), i.e. reactions between chemically inactive molecules
which recombine only when some third substance—the catalytic substrate—is present, are
widespread in nature [1, 2]. Recently, such reactions have attracted considerable attention
following an early observation [3] of remarkable non-mean-field behaviour exhibited by a
specific reaction—CO-oxidation in the presence of metal surfaces with catalytic properties
[1, 2]. An extensive analysis of this CAR has substantiated the emergence of an essentially
different behaviour compared to the predictions of the classical, formal-kinetics scheme and
have shown that under certain conditions collective phenomena such as phase transitions or the
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formation of bifurcation patterns may take place [3]. Prior to these works on catalytic systems,
anomalous behaviour was amply demonstrated in other schemes [4], involving reactions on
contact between two particles at any point of the reaction volume (i.e. the ‘completely’ catalytic
sysems). It was realized [4] that the departure from the textbook, formal-kinetic predictions
is due to many-particle effects associated with fluctuations in the spatial distribution of the
reacting species. This suggests that, similar to such ‘completely’ catalytic reaction schemes,
the behaviour of the CARs may be influenced by many-particle effects.

Apart from the many-particle effects, the behaviour of the CARs in practically involved
systems might be affected by the very structure of the catalytic substrate, which is often not
well-defined geometrically, but must be viewed as an assembly of mobile or localized catalytic
sites or islands, whose spatial distribution is complex [1]. Metallic catalysts, for instance, are
often disordered compact aggregates, the building blocks of which are imperfect crystallites
with broken faces, kinks and steps. Another example is furnished by porous materials with
convoluted surfaces, such as, e.g. silica, alumina or carbons. Here the effective catalytic
substrate is also only a portion of the total surface area because of the selective participation of
different surface sites to the reaction. Finally, for liquid-phase CARs the catalyst can consist
of active groups attached to polymer chains in solution.

Such complex morphologies render the theoretical analysis difficult. As yet, only
empirical approaches have been used to account for the impact of the geometrical complexity
on the behaviour of the CARs, based mostly on heuristic concepts of effective reaction order
or on phenomenological generalizations of the formal-kinetic ‘law of mass action’ (see, e.g.
[1] and [2] for more details). In this regard, analytical solutions of even somewhat idealized
or simplified models, such as, for instance, those proposed in [3], are already highly desirable
since such studies may provide an understanding of the effects of different factors on the
properties of the CARs.

In this letter we study a catalytically-activated annihilation A + A → 0 reaction in a
simple, one-dimensional model with random distribution of the catalyst, appropriate to the
just-mentioned situation with the catalytically activated reactions on polymer chains. We
present here an exact solution for this model with quenched random distribution of the
catalyst and show that despite its apparent simplicity it exhibits an interesting non-trivial
behaviour. We note finally that kinetics of A+A → 0 reactions involving diffusive A particles
which react upon encounters on randomly placed catalytic sites has been discussed already
in [5–8], and a rather surprising behaviour has been found, especially in low-dimensional
systems. Additionally, steady-state properties of A + A → 0 reactions between immobile
A particles with long-range reaction probabilities in systems with external particles input
have been presented in [9, 10] and revealed non-trivial ordering phenomena with anomalous
input intensity dependence of the mean particle density, which agrees with experimental
observations [11].

2. The model

Consider a one-dimensional regular lattice of unit spacing comprising N adsorption sites. The
lattice is in contact with a reservoir of identical, non-interacting hard-core A particles (see,
figure 1)—a vapour phase, which is steadily maintained at a constant pressure.

The A particles from the vapour phase can adsorb onto vacant adsorption sites and desorb
back to the reservoir. The occupation of the ith adsorption site is described by the Boolean
variable ni , such that

ni =
{

1 if the ith site is occupied
0 otherwise.

(1)
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Figure 1. One-dimensional lattice of adsorption sites in contact with a reservoir. Filled circles
denote hard-core A particles. Thick black lines denote the segments with catalytic properties.
(a) Denotes a ‘forbidden’ particle configuration, which corresponds to immediate reaction.
(b) Depicts the situation in which two neighbouring A particles may harmlessly coexist.

Suppose next that some of the segments—intervals between neighbouring adsorption
sites—possess ‘catalytic’ properties (thick black lines in figure 1) in the sense that they induce
an immediate reaction A + A → 0, as soon as two A particles land onto two vacant sites at the
extremities of the catalytic segment, or an A particle lands onto a vacant site at one extremity
of the catalytic segment while the site at the other extremity of this segment is already occupied
by another A particle. Two reacted A particles instantaneously leave the lattice (desorb back
to the reservoir). Any two A particle adsorbed at extremities of a non-catalytic segment
harmlessly coexist.

To specify the positions of the catalytic segments, we introduce a Boolean variable ζi , so
that ζ0 = ζN = 0 and

ζi =
{

1 if the ith interval is catalytic, i = 1, 2, . . . , N − 1
0 otherwise.

(2)

In what follows we suppose that ζi are independent, identically distributed quenched random
variables with distribution

ρ(ζ ) = pδ(ζ − 1) + (1 − p)δ(ζ ). (3)

Now, for a given distribution of the catalytic segments, the partition function ZN(ζ ) of
the system under study can be written as follows:

ZN(ζ ) =
∑
{ni}

z
∑N

i=1 ni

N−1∏
i=1

(1 − ζinini+1) (4)

where the summation
∑

{ni} extends over all possible configurations {ni}, while

z = exp(βµ) (5)

is the activity and µ the chemical potential. Note that ZN(ζ ) in equation (4) is a functional of
the configuration ζ = {ζi}.

It is worthwhile to remark that ZN(ζ ) can also be thought of as a one-dimensional version
of models describing adsorption of hard-molecules [12–19], i.e. adsorption limited by the
‘kinetic’ constraint that any two molecules can neither occupy the same site nor appear on
the neighbouring sites. The most celebrated examples of such models are furnished by the
so-called hard-squares model [12–16], or by the hard-hexagons model first solved exactly by
Baxter [18]. In our case of the CARs on random catalytic substrates the nearest-neighbour
exclusion constraint is introduced only locally, at some specified, randomly distributed
intervals. Such locally frustrated models of random reaction/adsorption thus represent a
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natural and meaningful generalization of the well-studied exclusion models over systems
with disorder. Of course, in this context two-dimensional situations are of most interest,
but nonetheless it might be instructive to find examples of such models which can be solved
exactly in one dimension.

Our main goal here is to calculate the disorder-average pressure per site:

P (quen) = 1

β
lim

N→∞
1

N
〈ln(ZN(ζ ))〉ζ (6)

where the angle brackets with the subscript ζ denote averaging over all possible configurations
{ζi}. Once P (quen) is obtained, all other pertinent thermodynamic properties can be readily
evaluated by differentiating P (quen) with respect to the chemical potential µ; in particular, the
disorder-average mean particle density n(quen) will be given by

n(quen) = ∂

∂µ
P (quen) (7)

while the compressibility kT obeys

k
(quen)

T = 1

(n(quen))2

∂n(quen)

∂µ
. (8)

To close this section, we display the results corresponding to two ‘regular’ cases: namely,
when p = 0 and p = 1, which will serve us in what follows as some benchmarks. In the
p = 0 all sites are decoupled, and one has the Langmuir results:

P (Lan) = 1

β
ln(1 + z) n(Lan) = z

1 + z
and β−1k

(Lan)
T = 1

z
(9)

The ‘regular’ case when p = 1 is a bit less trivial, but the solution can still be obtained
straightforwardly. In this case, we have

P (reg) = 1

β
ln

(√
1 + 4z + 1

2

)
n(reg) = 1 − 2z

1 + 4z − √
1 + 4z

(10)

and

β−1k
(reg)

T = 2z√
1 + 4z(1 + 2z − √

1 + 4z)
. (11)

Note that in the p = 1 case (the completely catalytic system) the mean particle density tends
to 1/2 as z → ∞ (compared to n(Lan) → 1 behaviour observed for the Langmuir case), which
means that the adsorbent undergoes ‘ordering’ transition and particles distribution on the
lattice becomes periodic revealing a spontaneous symmetry breaking between two sublattices.
In the limit z → ∞ the compressibility vanishes as k

(reg)

T ∝ 1/
√

z compared to the Langmuir
behaviour k

(Lan)

T ∝ 1/z.

3. Recursion relations for ZN (ζ)

Let us first introduce an auxiliary, constrained partition function of the form

Z′
N(ζ ) = ZN(ζ )|nN=1 = z

∑
{ni}

z
∑N−1

i=1 ni

N−2∏
i=1

(1 − ζinini+1)(1 − ζN−1nN−1) (12)

i.e. Z′
N(ζ ) stands for the partition function of a system with fixed set ζ = {ζi} and fixed

occupation of the site i = N,nN = 1. Evidently, we have that

ZN(ζ ) = ZN−1(ζ ) + Z′
N(ζ ). (13)
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Next, considering two possible values of the occupation variable nN−1, i.e. nN−1 = 0 and
nN−1 = 1, we find that Z′

N(ζ ) can be expressed through ZN−2(ζ ) and Z′
N−1(ζ ) as

Z′
N(ζ ) = z

∑
{ni}

z
∑N−2

i=1 ni

N−3∏
i=1

(1 − ζinini+1)

+ z2(1 − ζN−1)
∑
{ni}

z
∑N−2

i=1 ni

N−3∏
i=1

(1 − ζinini+1)(1 − ζN−2nN−2)

= zZN−2(ζ ) + z(1 − ζN−1)Z
′
N−1(ζ ) (14)

Now, the recursion in equation (13) allows us to eliminate Z′
N(ζ ) in equation (14). From

equation (13) we have Z′
N(ζ ) = ZN(ζ ) − ZN−1(ζ ), and consequently, we find from

equation (14) that the unconstrained partition function ZN(ζ ) in equation (4) obeys the
following recursion

ZN(ζ ) = (1 + z(1 − ζN−1))ZN−1(ζ ) + zζN−1ZN−2(ζ ), (15)

which is to be solved subject to evident initial conditions

Z0(ζ ) ≡ 1 and Z1(ζ ) ≡ 1 + z. (16)

A conventional way (see, e.g. [20–22]) to study linear random three-term recursions is to
reduce them to random maps by introducing the Ricatti variable of the form

RN(ζ ) = ZN(ζ )

ZN−1(ζ )
(17)

In terms of this variable equation (15) becomes

RN(ζ ) = (1 + z(1 − ζN−1)) +
zζN−1

RN−1(ζ )
with R1(ζ ) ≡ R1 = 1 + z, (18)

which represents a random homographic relation. Once RN(ζ ) is defined for arbitrary N, the
partition function ZN(ζ ) can be readily determined as the product

ZN(ζ ) =
N∏

i=1

Ri(ζ ) (19)

and hence, the disorder-average logarithm of the partition function will be obtained as

〈ln ZN(ζ )〉ζ =
N∑

i=1

〈ln Ri(ζ )〉ζ . (20)

Before we proceed further, we note that recursion schemes of quite a similar form have
been discussed already in the literature in different contexts. In particular, two decades ago
Derrida and Hilhorst [20] (see also [23] for a more general discussion) have shown that such
recursions occur in the analysis of the Lyapunov exponent F(ε) of the product of random
2 × 2 matrices of the form

F(ε) = lim
N→∞

1

N

〈
ln

(
Tr

[
N∏

i=1

(
1 ε

ziε zi

)])〉
{zi}

(21)

where zi are independent positive random numbers with a given probability distribution ρ(z).
Equation (21) is related, for instance, to the disorder-average free energy of an Ising chain
with nearest-neighbour interactions in a random magnetic field, and appears in the solution of
a two-dimensional Ising model with row-wise random vertical interactions [24], the role of ε
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being played by the wavenumber θ . The recurence scheme in equation (18) emerges also in
such an interesting context as the problem of enumeration of primitive words with random
errors in the locally free and braid groups [25]. Some other examples of physical systems in
which the recursion in equation (18) appears can be found in [22].

Further on, Derrida and Hilhorst [20] have demonstrated that F(ε) can be expressed as

F(ε) = lim
N→∞

1

N

N∑
i=1

〈ln R′
i〉{zi } (22)

where R′
i are defined through the recursion

R′
i = 1 + zi−1 + zi−1(ε

2 − 1)/R′
i−1 with R′

1 = 1. (23)

Moreover, they have shown that the model admits an exact solution when

ρ(z) = (1 − p)δ(z) + pδ(z − y) (24)

i.e. when similarly to the model under study, zi are independent, random two-state variables
assuming only two values—y with probability p and 0 with probability 1 − p. Supposing that
when i increases, a stationary probability distribution P(R′) of the R′

i independent of i exists
[26], Derrida and Hilhorst [20] have found the following exact result:

F(ε) = p ln(1 + b) − p(2 − p) ln

(
1 + b

y − b

1 − by

)

+ (1 − p)2
∞∑

N=1

pN ln

(
1 + b

(
y − b

1 − by

)N+1
)

(25)

where

b = 1 +
(1 − y)2

2ε2y

[
1 −

(
1 + 4

ε2y

(1 − y)2

)1/2
]

. (26)

4. Disorder-average pressure

We turn now back to our recursion scheme in equation (18) and note that setting

Ri(ζ ) = (1 + z)R′
i (27)

and choosing

y = − z

1 + z
= −n(Lan) and ε2 = z

1 + z
= n(Lan) (28)

makes the recursion schemes in equations (18) and (23) identical! Consequently, the disorder-
average pressure per site in our random catalytically-activated reaction/adsorption model can
be expressed as

P (quen) ≡ 1

β
ln(1 + z) +

1

β
F(ε) (29)

where F(ε) is the Lyapunov exponent of the product of random 2 × 2 matrices in
equation (21), in which ε and zi are defined by equations (24) and (28).

Note next that the first term on the right-hand side of equation (29) is a trivial Langmuir
result for the p = 0 case (adsorption without reaction) which would entail n(quen) = z/(1 + z),
equation (9). Hence, all non-trivial, disorder-induced behaviour is embodied in the Lyapunov
exponent F(ε).



Letter to the Editor L701

The disorder-averaged pressure per site for the random reaction/adsorption model under
study can be thus readily obtained from equations (25) and (26) by defining the parameters y

and ε as prescribed in equation (28). This yields the following exact result:

βP (quen) = ln(φz) − (1 − p) ln(1 − ω2) +
(1 − p)2

p

∞∑
N=1

pN ln(1 − (−1)NωN+2) (30)

where

φz = 1 +
√

1 + 4z

2
(31)

and

ω =
√

1 + 4z − 1√
1 + 4z + 1

= z
/
φ2

z = 1 − 1

φz

. (32)

Note that φz obeys φz(φz − 1) = z; hence, φz=1 = (
√

5 + 1)/2 is just the ‘golden mean’.

5. Asymptotic behaviour of the disorder-average pressure, mean density and the
compressibility

Consider first the asymptotic behaviour of P (quen) in the small-z limit. To do this, it is expedient
to use another representation of P (quen). After some straightforward calculations, one can cast
P (quen) in equation (30) into the form:

βP (quen) = (1 − p)

p

∞∑
n=0

pnFn (33)

where Fn denote natural logarithms of the Stieltjes-type continued fractions of the form

Fn = ln




1 +
z

1 +
z

1 +
z

1 +
· · ·

1 + z




. (34)

Note now that in the limit n → ∞, one has

lim
n→∞Fn = ln(φz) = ln

(
1 +

√
1 + 4z

2

)
(35)

i.e. Fn is the nth approximant of ln(φz); hence, P (quen) can be thought of as the generating
function of such approximants. Now, one finds that for z < 1 the sequence of approximants
converges quickly to ln(φz); expanding the nth approximantFn into the Taylor series in powers
of z, one has that the first n terms of such an expansion coincide with the first n terms of the
expansion of ln(φz), i.e.

ln(φz) = ln

(
1 +

√
1 + 4z

2

)
= − 1

2
√

π

∞∑
n=1

(−1)n�(n + 1/2)

�(n + 1)

(4z)n

n
. (36)

Consequently, Fn and Fn−1 differ only by terms of order zn, which signifies that convergence
is good. On the other hand, for z � 1 convergence becomes poor and one has to seek a more
suitable representation. As a matter of fact, already for z = 1 one has that in the limit n → ∞
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the approximant Fn tends to ln(φ1), i.e. the logarithm of the ‘golden mean’, which is known
as the irrational number worst approximated by rationals.

In the small-z limit, we then find using an expansion in equation (36) that P (quen) follows

βP (quen) = z − (
1
2 + p

)
z2 +

(
1
3 + 2p + p2)z3 − (

1
4 + 7

2p + 4p2 + p3)z4 + O(z5). (37)

Consequently, in the small-z limit the mean density obeys:

n(quen) = z − (1 + 2p)z2 + (1 + 6p + 3p2)z3 − (1 + 14p + 16p2 + 4p2)z4 + O(z5) (38)

while the compressibility k
(quen)

T is given by

β−1k
(quen)

T = 1

z
+ p(2 − p)z − 4p(2 − p)z2 + 3p(8 − p − 2p2)z3 + O(z4). (39)

Note that the coefficients in the small-z expansion coincide with the coefficients in the
expansions of P (Lan) and P (reg) when we set in equation (37) p = 0 or p = 1.

Now, we turn to the analysis of the large-z behaviour which is a bit more complex than
the z 	 1 case and requires understanding of the asymptotic behaviour of the sum

S =
∞∑

N=1

pN ln(1 − (−1)NωN+2) (40)

entering equation (30). We note first that in this sum the behaviour of the terms with odd and
even N is quite different and we have to consider it separately. Let

Sodd = 1

p

∞∑
N=1

p2N ln(1 + ω2N+1) (41)

denote the contribution of the terms with odd N. Note that when z → ∞ (i.e. ω → 1) the
sum Sodd tends to p ln(2)/(1 − p2). The corrections to this limiting behaviour can be defined
as follows. Expanding ln(1 + ω2N+1) into the Taylor series in powers of ω and then, using
the definition ω = 1 − 1/φz and the binomial expansion, we construct a series in the inverse
powers of φz:

Sodd = p

1 − p2
ln(2) − 1

2

p(3 − p2)

(1 − p2)2

1

φz

+
1

8

p(3 + 6p2 − p4)

(1 − p2)3

1

φ2
z

+
1

24

p(15 + 10p2 − p4)

(1 − p2)3

1

φ3
z

+ O
(

1

φ4
z

)
. (42)

Note that this expansion is only meaningful when φz 
 (1 − p)−1, (z 
 (1 − p)−2), which
signifies that p = 1 is a special point.

Further on, plugging into the latter expansion the definition of φz, φz = (1 +
√

1 + 4z)/2,
we obtain the following expansion in the inverse powers of the activity z:

Sodd = p

1 − p2
ln(2) − p

2

(3 − p2)

(1 − p2)2

1

z1/2
+

p

8

(9 − 2p2 + p4)

(1 − p2)3

1

z

+
p

48

(3 − 4p2 + p4)

(1 − p2)3

1

z3/2
+ O

(
1

z2

)
. (43)

Consider next the sum

Seven =
∞∑

N=1

p2N ln(1 − ω2N+2) (44)
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which represents the contribution of terms with even N. Note that in contrast to the behaviour
of Sodd, the sum in equation (44) diverges when z → ∞ (ω → 1). Since 1 − ω2N+2 ∼ 1 − ω

when ω → 1, we have that in this limit the leading behaviour of Seven is described by

Seven ∼ p2

1 − p2
ln(1 − ω). (45)

To obtain several correction terms we make use of one of Gessel’s expansions [27]:

ln

(
2(N + 1)x

1 − (1 − x)2N+2

)
=

∞∑
k=1

gk(2N + 2)
(−1)kxk

k
(46)

where gk(2N + 2) are the Dedekind-type sums of the form

gk(2N + 2) =
∑

ζ 2N+2=1,ζ� =1

1

(ζ − 1)k
(47)

where the summation extends over all ζ being the (2N + 2)-th roots of unity (with ζ = 1
excluded). As shown in [27], the weights gk(2N + 2) are polynomials in N of degree at most k
with rational coefficients. Next, setting x = 1/φz in the expansion in equation (46), plugging
it into equation (44) and performing summations over N, we find that Seven can be written
down as

Seven = − p2

1 − p2
ln(φz) +

p2

1 − p2
ln(2) + sp −

∞∑
k=1

Gk(p)
(−1)k

kφk
z

(48)

where sp is an infinite series of the form3

sp =
∞∑

N=1

p2N ln(N + 1) (50)

while Gk(p) are the generating functions of the polynomials gk(2N + 2):

Gk(p) =
∞∑

N=1

gk(2N + 2)p2N. (51)

Inserting next the definition of φz, we find the following explicit asymptotic expansion

Seven = −1

2

p2

1 − p2
ln(z) +

p2

1 − p2
ln(2) + sp − p2(2 − p2)

(1 − p2)2

1

z1/2

+
p2(21 − 18p2 + 5p4)

24(1 − p2)3

1

z
+

p2(2 − p2)

24(1 − p2)2

1

z3/2
+ O

(
1

z2

)
. (52)

Finally, combining the expansions in equations (30), (43) and (52), we find the following
large-z expansion for the disorder-averaged pressure P (quen):

βP (quen) = 1

1 + p
ln(z) − (1 − p)2

(1 + p)
ln(2) +

(1 − p)2

p
sp +

1

6

6 + 3p − p3

(1 + p)2(1 − p2)

1

z
+ O

(
1

z2

)
(53)

3 Note that sp shows a non-analytic behaviour when p → 1. This function can be represented as

sp = − 1

1 − p2
ln(1 − p2) − p2

1 − p2

∞∑
n=2

(−1)n

n
�(p2, n, 1) (49)

where �(p2, n, 1) are the Lerch transcedents, �(p2, n, 1) = ∑∞
l=0(1 + l)−np2l . It is straightforward to find then that

sp = − 1
1−p2 ln(1 − p2) − γ

1−p2 + O(ln(p)), where γ is the Euler constant.
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which yields

n(quen) = 1

1 + p
− 1

6

6 + 3p − p3

(1 + p)2(1 − p2)

1

z
+ O

(
1

z2

)
(54)

and

β−1k
(quen)

T = 1

6

6 + 3p − p3

(1 + p)(1 − p2)

1

z
+

1

36

p(6 + 3p − p3)2

(1 + p)2(1 − p2)2

1

z2
+ O

(
1

z3

)
. (55)

Note that asymptotic expansions in equations (53), (54) and (55) are only meaningful for
z 
 (1 − p)−2 and thus exclude the completely catalytic p = 1 case. At this special point
p ≡ 1 we find from equation (10) that the pressure and mean density exhibit a non-analytic
dependence on 1/z:

βP (reg) = 1

2
ln(z) +

1

2z1/2
− 1

48z3/2
+

3

1280z5/2
+ O

(
1

z7/2

)
(56)

and

n(reg) = 1

2
− 1

4z1/2
+

1

32z3/2
− 3

512z5/2
+ O

(
1

z7/2

)
(57)

which differs substantially from the asymptotical behaviour in the p < 1 case, equations (53)
and (54). This happens apparently because the bulk contribution to the disorder-average
pressure in equation (53) comes from the intervals devoid of the catalytic segments, in which
reactions cannot take place and the mean density n ∼ 1 in accordance with the Langmuir
adsorption/desorption mechanism. Such intervals exist for any p strictly less than unity; their
contribution vanishes only when p ≡ 1.

6. Conclusions

To conclude, in this letter we have presented an exact solution of a random catalytic
reaction/adsorption model, appropriate to the situations with the catalytically-activated
reactions on polymer chains containing randomly placed catalytist. More specifically, we
have considered here the A + A → 0 reaction on a one-dimensional regular lattice which is
brought in contact with a reservoir of A particles. Some portion of the intersite intervals on
the regular lattice was supposed to possess special ‘catalytic’ properties such that they induce
an immediate reaction A + A → 0, as soon as two A particles land onto two vacant sites at
the extremities of the catalytic segment, or an A particle lands onto a vacant site while the
site at the other extremity of the catalytic segment is already occupied by another A particle.
For quenched random distribution of the catalytic segments, we have determined exactly the
disorder-averaged pressure per site and have shown that it can be represented as a sum of a
Langmuir-type contribution and a reaction-induced term. The latter can be expressed as the
Lyapunov exponent of a product of random 2 × 2 matrices, obtained by Derrida and Hilhorst
[20]. Explicit asymptotic expansions for the mean particle density and the compressibility
were also derived.
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